砂浆泵厂家
免费服务热线

Free service

hotline

010-00000000
砂浆泵厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

深度学习利器TensorFlow与深度卷积神经网络_[#第一枪]

发布时间:2021-06-07 12:27:34 阅读: 来源:砂浆泵厂家

原标题:深度学习利器:TensorFlow与深度卷积神经网络  前言  图像识别技术越来越多地渗透到我们的日常生活中,人可以很快递判别图像类型,比如,很容易地识别一个图片是狮子还是其它动物,可以很容易地对人脸进行识别。但是对于机器来说,去识别一个图片是什么,是一个非常困难的问题。但在过去的几年中,图像识别技术取得了巨大的进展,在一些固定领域可以达到,甚至超越人类的识别精度,该技术称为深度卷积神经网络(Deep Convolutional Neural Network)。  目前,学术界主要通过ImageNet的Benchmark问题,去验证图像识别技术的发展程度,卷积神经网络模型包括:QuocNet, AlexNet, Inception (GoogLeNet), BN-Inception-v2,以及最新的Inception-v3模型。其中,AlexNet的top-5的错误率为15.3%;Inception(GoogLeNet)降到6.67%;BN-Inception-v2降到4.9%;Inception-v3降到3.46%。  如果用户有业务图片数据,如何利用开源现有的模型进行训练呢?如何进行花图片识别,人物图片识别,车辆图片识别,医学图片识别呢?本文主要介绍TensorFlow开源模型Cifar10,Inception V3,Vgg19的主要架构和代码。如果用户需要对业务图片识别,可再已有模型的基础上持续改进,进行训练及调优,加速研发,满足业务需求。  卷积神经网络回顾  卷积神经网络是基于人工神经网络的深度机器学习方法,成功应用于图像识别领域。CNN采用了局部连接和权值共享,保持了网络的深层结构,同时又减少了网络参数,使模型具有良好的泛化能力又较容易训练,CNN的训练算法是梯度下降的错误反向传播(Back Propagate,BP)算法的一种变形。  卷积神经网络通常采用若干个卷积和子采样层的叠加结构作为特征抽取器。卷积层与子采样层不断将特征图缩小,但是特征图的数量往往增多。特征抽取器后面接一个分类器,分类器通常由一个多层感知机构成。在特征抽取器的末尾,我们将所有的特征图展开并排列成为一个向量,称为特征向量,该特征向量作为后层分类器的输入,如下图所示:  (点击放大图像)

卷积过程有三个二维矩阵参与,它们分别是两个特征图和一个卷积核:原图inputX、输出图outputY、卷积核kernelW。卷积过程可以理解为卷积核卷积核kernalW覆盖在原图inputX的一个局部的面上,kernalW对应位置的权重乘于inputX对应神经元的输出,对各项乘积求和并赋值到outputY矩阵的对应位置。卷积核在inputX图中从左向右,从上至下每次移动一个位置,完成整张inputX的卷积过程,如下图所示:

子采样有两种方式,一种是均值子采样,一种是最大值子采样,如下图所示:

在最大值子采样中的卷积核中,只有一个值为1,其他值为0,保留最强输入值,卷积核在原图上的滑动步长为2,相当于把原图缩减到原来的1/4。均值子采样卷积核中的每个权重为0.25,保留的是输入图的均值数据。

供热智慧热网图片

家用咖啡机批发

防水宣传栏批发